湘江高端學術論壇預告-湖南大學李克勤教授--2003网站太阳集团
時間:2024-01-02 訪問量:
湘江高端學術報告會:
Computation Offloading in Fog Computing:
A Combinatorial Optimization Approach
2003网站太阳集团将于2024年1月2日(周二)舉行湘江高端論壇,主題為“Computation Offloading in Fog Computing: A Combinatorial Optimization Approach” 的學術報告會。敬請光臨!
報告題目:Computation Offloading in Fog Computing: A Combinatorial Optimization Approach
報 告 人:IEEE Fellow、歐洲科學院院士、湖南大學特聘教授 李克勤
報告時間:2024年1月2日周二下午 16:00-17:00
報告地點:逸夫樓201會議室
報告摘要:
The investigation in this study makes the following important contributions to combinatorial optimization of computation offloading in fog computing. First, we rigorously define the two problems of optimal computation offloading with energy constraint and optimal computation offloading with time constraint. We do this in such a way that between execution time and energy consumption, we can fix one and minimize the other. We prove that our optimization problems are NP-hard, even for very special cases. Second, we develop a unique and effective approach for solving the proposed combinatorial optimization problems, namely, a two-stage method. In the first stage, we generate a computation offloading strategy. In the second stage, we decide the computation speed and the communication speeds. This method is applicable to both optimization problems. Third, we use a simple yet efficient greedy method to produce a computation offloading strategy by taking all aspects into consideration, including the properties of the communication channels, the power consumption models of computation and communication, the tasks already assigned and allocated, and the characteristics of the current task being considered. Fourth, we experimentally evaluate the performance of our heuristic algorithms. We observe that while various heuristics do exhibit noticeably different performance, there can be a single and simple heuristic which can perform very well. Furthermore, the method of compound algorithm can be applied to obtain slightly improved performance. Fifth, we emphasize that our problems and algorithms can be easily extended to study combined performance and cost optimization (such as cost-performance ratio and weighted cost-performance sum optimization), and to accommodate more realistic and complicated fog computing environments (such as preloaded mobile edge servers and multiple users) with little extra effort. To the best of our knowledge, there has been no similar study in the existing fog computing literature.
個人簡介:
李克勤, 紐約州立大學特聘教授和湖南大學(中國)國家特聘教授,紐約州立大學傑出學院成員, AAAS Fellow、IEEE Fellow、AAIA Fellow 和 ACIS Founding Fellow,歐洲科學院院士(Academia Europaea),1985 年獲清華大學計算機科學學士學位,1990 年獲休斯頓大學計算機科學博士學位。撰寫或合著了 970 多篇期刊論文、書籍章節和經評審的會議論文。曾多次獲得國際會議最佳論文獎,包括 PDPTA-1996、NAECON-1997、IPDPS-2000、ISPA-2016、NPC-2019、ISPA-2019 和 CPSCom-2022。擁有近 75 項中國國家知識産權局公布或授權的專利。在并行計算和分布式計算領域的單年度和職業生涯影響位居世界前五位(Scopus引文數據庫)。連續二十多年入選《馬奎斯科學與工程名人錄》、《美國名人錄》、《世界名人錄》和《美國教育名人錄》。2017年榮獲阿爾伯特-納爾遜-馬奎斯終身成就獎。2018 年獲得休斯頓大學計算機科學系頒發的傑出校友獎。 2022 年獲得 IEEE CS 雲計算技術委員會 IEEE TCCLD 研究影響獎。于 2023 年獲得 IEEE CS 服務計算技術社區頒發的 IEEE TCSVC 研究創新獎。 2023 年榮獲 IEEE 第一區技術創新獎(學術)。