導師隊伍

您所在位置: 首頁 > 導師隊伍

黃文體簡介

姓名:黃文體

職稱/職務:校聘副教授

專 業:計算機科學與技術

研究方向:大數據與知識工程、知識圖譜、自然語言處理

郵箱:wthuang@hnust.edu.cn

科研項目:

(1)教育廳優秀青年項目,“知識協同的神經網絡關系抽取方法研究”,主持。

(2)科技部重點研發計劃子課題,“特定***計算與解釋機理”,主持。

(3)科技部科技創新2030--“新一代人工智能”重大項目,“醫療行為的時空協同表征理論與多維度主動感知方法”,參與。

(4)國家自然科學基金重點聯合項目,“基于超算的跨網絡大規模數據實時分析方法研究”,參與。

學術論文:

[1] Huang W, Mao Y, Long J, et al. Relation classification via knowledge graph enhanced transformer encoder[J]. Knowledge-Based Systems, 2020, 206: 106321.(中科院一區,JCR Q1, 影響因子:8.03)

[2] Huang W, Mao Y, Long J, et al. Quantum hacking of free-space continuous-variable quantum key distribution by using a machine-learning technique[J]. Physical Review A, 2019, 100(1): 012316.(中科院二區,NI檢索,JCR Q2)

[3] Huang W, Mao Y, Long J, et al. Local­to­Global GCN with Knowledge­aware Representation for Distantly Supervised Relation Extraction[J]. Knowledge­BasedSystems, 2021.(中科院一區,JCR Q1,online,DOI10.1016/j.knosys.2021.107565,影響因子:8.03)

[4] Mao N, Zhong H, Huang W*. KGGCN: Knowledge-Guided Graph Convolutional Networks for Distantly Supervised Relation Extraction[J]. Applied Sciences, 2021,16(11):7734.(中科院三區,JCR Q2,)

[5] Long J, Wang Y, Huang W*, et al. Entity-Centric Fully Connected GCN for Relation Classification[J]. Applied Sciences, 2021, 4(11):1377. (中科院三區,JCR Q2)

[6] Mao Y, Wu X, Huang W*, et al. Monte Carlo-Based Performance Analysis for Underwater Continuous-Variable Quantum Key Distribution[J]. Applied Sciences, 2020, 10(17): 5744.(中科院三區,JCR Q2)

[7] Mao Y, Wang Y, Huang W*, et al. Continuous-variable quantum key distribution based on peak-compensation[J]. Acta PhysicaSinica, 2021, 70(11): 110302 (中科院三區,JCR Q4)

[8] Jun Long, Lei Liu, Hongxiao Fei, Yiping Xiang, Haoran Li, Wenti Huang*, and Liu Yang, Contextual Semantic-Guided Entity-Centric GCN forRelation Extraction[J], Mathematics, 2022, 10(8):1-17. (中科院二區,JCRQ1)

專利:

(1)龍軍,黃文體一種基于知識圖譜的學術圈構建方法專利号:201910668329.8

(2)龍軍,黃文體一種基于增量學習的作者消歧方法專利号:201910691093.X